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EXPLORING THE USE OF COGNITIVE MODELS FOR NUCLEAR 
POWER PLANT HUMAN-SYSTEM INTERFACE EVALUATION

Casey R. Kovesdi, M.S. and Jeffrey C. Joe, M.S.
Idaho National Laboratory

Many of the United States’ commercial fleet of nuclear power plants (NPPs) are approaching the end of 
their operating licenses. To extend the life of these plants, advanced human-system interface (HSI) 
technologies are being researched to address aging and reliability concerns with existing legacy systems.
Human factors engineering (HFE) a critical role in ensuring these technologies are designed in a way that 
does not introduce new failure modes and promotes optimal human-system performance. An important 
focus of HFE in NPP modernization is early involvement to inform design of the HSI. This includes
traditional formative evaluations, which are done to collect design feedback. While these evaluations are 
useful, they are limited in providing convincing quantitative data for efficiency of use. This paper discusses 
the use of cognitive models to provide quantitative data early in the HSI design process. A comparison is 
made of three open-source and readily accessible cognitive modeling tools.

INTRODUCTION

The existing United States (U.S.) commercial nuclear 
power plant (NPP) fleet generates about 20% of the nation’s 
electricity. However, many NPPs within the U.S. fleet are now 
approaching the end of their operating licenses. The 
Department of Energy Light Water Sustainability Program 
(LWRS) is active in conducting targeted research and 
development (R&D) to extend the operating lives of these 
plants by ensuring they stay cost-competitive and maintain 
safe, reliable, and efficient operation. One LWRS pathway is 
researching digital instrumentation and control (I&C)
technologies that address aging and reliability concerns with
existing legacy I&C for these NPPs.

Advanced human-system interface (HSI) technologies 
are being researched to replace the legacy analog 
instrumentation and controls that once covered the entire 
footprint of the main control room. These advanced digital 
systems offer new capabilities with increased levels of 
automation for control actions, information and decision 
aiding, interface management, and administrative tasks (EPRI, 
2015). The inclusion of human factors engineering (HFE) is 
crucial in ensuring these technologies are designed in a way 
that does not introduce new failure modes and that promotes
optimal human-system performance (NUREG-0711, 2002).

As with other engineering domains, the HFE process 
requires advance specification of system characteristics
followed by systematic demonstration that the as-built system 
has these characteristics (Good et al., 1986). For NPP 
modifications, the U.S. Nuclear Regulatory Commission 
follows this approach by systematically reviewing an 
applicant’s HFE program as described in NUREG-0800 (Rev. 
3), Standard Review Plan Chapter 18 - Human Factors 
Engineering (2016), and NUREG-0711 (Rev. 3), Human 
Factors Engineering Program Review Model (2012). The 
review criteria in NUREG-0711 suggests that applicants 
integrate HFE in the development process early and 
throughout the modification’s lifespan, with an emphasis on
later-stage verification and validation (V&V) efforts like 
integrated system validation (ISV).

Recent work, namely the Guideline for Operational 
Nuclear Usability and Knowledge Elicitation (GONUKE)
framework, provides a detailed process that utilities can follow 
to ensure successful V&V. GONUKE emphasizes a cost-
effective approach by focusing on early-staged HFE 
evaluations that are most impactful in influencing and refining
design, as opposed to later-stage ISV of a final system 
(Boring, 2015). In its simplest form, GONUKE suggests
formative and summative evaluations, each using methods in 
verification and validation. 

While summative evaluation is synonymous with ISV as 
described in NUREG-0711, formative evaluations provide a 
basis for refining the HSI design through rapid iterative testing 
and evaluation. Common methods at this phase include focus 
groups, usability tests, surveys, and other forms of contextual 
research. These methods often rely on smaller sample sizes 
than those used in summative evaluation, as their statistical 
basis is fundamentally different (e.g., Nielsen, 1994). Plant 
personnel (e.g., licensed operators) who participate in these 
formative evaluations are not formally trained on the HSI as 
they would be for their licensing requirements. Hence, their 
interactions with the HSI may be more exploratory in nature to 
provide input into the design requirements (e.g., Ulrich, 
Boring, and Lew, 2018). 

In some cases, the HSI designer might be interested in 
understanding how an HSI concept may support efficient 
operation. For instance, there may be circumstances in which
quick access to soft controls on the HSI is critical (e.g., access 
to a reactor trip button); there may even be a specific 
benchmark or time requirement for accessing these controls.
While the current formative methods might help the designer 
understand qualitative aspects of the design, these methods do 
not provide convincing quantitative data for efficiency of use.
As such, additional easy-to-use evaluation tools that can 
uniquely inform HSI design early in this formative process
ought to be explored to expand the HSI designer’s evaluation
toolkit. One promising methodology that may support
provision of this early quantitative data entails the inclusion of
applied cognitive models. The next section discusses a 
candidate cognitive modeling approach with three available 
tools under this umbrella.



CANDIDATE COGNITIVE MODELS FOR HSI DESIGN

A comprehensive discussion of all available cognitive 
models and their underlying theories is beyond the scope of 
this paper; however, one overarching methodology that has 
had a notable impact to HFE is GOMS (Goals, Operators, 
Methods, and Selection rules), developed by Card, Moran, and 
Newell (1980; 1983). GOMS provides a top-down approach to
decomposing a task, starting at the user’s goal and breaking 
the goal down into sub-goals. Goals and sub-goals are 
achieved by applying methods and selection rules. Using this
GOMS framework, there are open-source and readily 
accessible tools for interface evaluation. These tools are 
described next.

Keystroke-Level Model

Traditional keystroke-level models (KLMs) provide a set
of primitives to model a skilled user interacting with a 
computerized system in an error-free manner (Card, Moran, & 
Newell, 1980). Each primitive (e.g., an underlying task, such 
as moving a mouse cursor to a target) contains specific 
empirically-derived quantitative execution times. Examples of 
KLM primitives include: keystrokes (e.g., 80 milliseconds for 
best typist), pointing a target on a display using a mouse (1100 
milliseconds), clicking a mouse button (200 milliseconds), 
homing the hands on the keyboard (400 milliseconds), and 
mentally preparing to execute an action (1350 milliseconds).
These execution times can be summed to create an overall 
predicted task time. 

The application of KLMs has traditionally focused on 
computer-based interactions; extensions of the KLM have 
been explored in different domains, such as the design of 
handheld devices, automotive information systems, cockpit 
design in aviation, and human-robot interaction (e.g., Luo & 
John, 2005; Pettitt, Burnett, and Stevens, 2007; Campbell, 
2002; Drury, Scholtz, and Kieras, 2007). A straightforward 
case for using traditional KLM in HSI design is modeling the 
time it might take a trained operator to find the turbine trip 
soft control on any given HSI display. Figure 1 shows how a
simple spreadsheet could be used to calculate a predicted task.

Figure 1. Example KLM prediction for a simple task.

There are a couple of notable limitations to KLM. First, 
KLM assumes that the primitives are sequential and that there 
is a set order to completing the task. Hence, tasks that occur in 
parallel (e.g., monitoring an HSI display while completing a 
set of control actions) may be difficult to model. Further, 
when task success contains more than one path, the 
development of KLMs through selecting individual primitives 

can be tedious. Finally, the KLM primitives may be too 
general to capture subtle differences between HSI concepts 
(e.g., the size of a button or location of an indication).

CogTool

CogTool is an open-source program that expands on the 
traditional KLM approach by using the ACT-R cognitive 
architecture to provide more precise predictions (John et al., 
2004). For example, the generic KLM pointing primitive was 
replaced as a function of cursor distance and button size using 
Fitt’s Law. CogTool also enables the HSI modeler to generate 
models using a graphical user interface to create storyboards
of the task under evaluation (Bellamy, John, and Kogan, 
2011). The training requirements are minimal. The HSI 
modeler can develop quantitative predictions by simply
importing HSI design concepts (i.e., as images) into CogTool, 
adding CogTool widgets onto the imported images, and then 
demonstrating the task within CogTool as a storyboard. 

Figure 2 shows the interface of CogTool. The top 
screenshot shows the imported HSI displays in CogTool with 
widgets overlaid on the key indications and controls under 
evaluation. The bottom screenshot shows the results of the 
storyboard (e.g., navigate to the “ELEC” screen), presented 
with a predicted task time and the underlying primitives. 

Figure 2. Example of the CogTool user interface.

CogTool was originally designed for computer-based 
tasks that involve viewing and interacting with information on 
a user interface and using a keyboard, mouse, or touch screen. 
As seen in the top portion of Figure 2 above, the available 
widgets are limited to mouse, keyboard, touchscreen, and 
microphone as inputs and a display and speaker for outputs. 
The modeler also has access to a timeline visualization of the 
generated ACT-R model in which there is an option to 
compare a second task or another HSI concept. The ACT-R 



primitives shown in the visualization include system (frame), 
eyes (vision, eye movement preparation, and eye movement 
execution), cognition, and motor (see Figure 3).

Figure 3. Example CogTool timeline visualization.

CogTool’s predicted task times are claimed to be within 
20 percent (i.e., +/- 10% of the point estimate) of observed 
human performance times (John et al., 2004). There is an 
option to present predicted performance in CogTool as a range 
to present potential variability in the prediction. Despite this
accuracy claim, some literature has suggested that the 
accuracy of its predictions falls short for certain domains. For 
instance, Jorritsma and colleagues (2015) found that CogTool
and other KLMs were not reliable in determining whether a 
given website design was faster than another. 

Further, Adio (2014) compared observed task times to 
CogTool’s predicted times for HSI displays designed for the 
petrochemical industry. Adio found that the ACT-R “think 
time,” specified at a constant of 1.2 seconds, was too short of a 
duration for control room monitoring tasks. Adio’s rationale 
for this discrepancy was that process control tasks often 
require plant operators to scan multiple monitors, retain 
information in working memory, and apply decision rules that 
are not built into CogTool’s core modeling architecture.
Another notable limitation of CogTool is that its interactions 
are constrained solely to computer applications. That is,
interactions with certain physical controls, such as rotary dials 
and J-handles, are not built into the inputs available for model 
generation. Further, the time required for operators to walk 
board to board cannot be readily modeled in CogTool.

Cogulator

Cogulator is an open-source program that uses GOMS to 
generate predicted task times with extensions in predicting
working memory load and mental workload (e.g., Estes, 2017; 
Stanley et al., 2017). Cogulator is script-based, requiring the
HSI modeler to develop predictive models through its own 
syntax. Cogulator contains predefined primitives that are 
based on the original KLM framework, as well as other 
GOMS models: NGOMSL (Natural GOMS Language), 
Cognitive, Motor, Perceptual (CPM)-GOMS, Card, Moran, 
and Newell (CMN)-GOMS, as well as human-information 
processor (HIP). Each of these models have differing 
granularity for what level of detail each primitive represents. 
For instance, the primitives for traditional KLM are at a higher 
level (e.g., generic think time) than primitives for HIP (e.g., 
motor processor). Hence, the modeler must decide what level 
of detail is needed in the analysis.

It is worth noting that Cogulator’s built-in primitives for
various motor actions are more comprehensive than those 
within CogTool and traditional KLM. There are representative 
actions that would be expected in control room operations 
readily available in Cogulator. There are motor primitives for 
turning a dial or knob (e.g., rotary dial), as well as grasping an
object with a hand (e.g., J-handle). One other advantage of 
Cogulator is its flexibility in allowing the modeler to create 
new domain-specific primitives as needed. Finally, 
Cogulator’s NGOMSL framework supports modeling 
multitask activities.

Figure 4 presents the interface of Cogulator. To illustrate 
its capability of modeling multitask activities, Figure 4 
presents a navigation task (e.g., go to the “ELEC” screen) 
along with a mental calculation task (e.g., determining the 
temperature change from an indication in the control room). 
The latter task requires mental arithmetic, which influences
working memory load, illustrated as “2.4 chunks” in the top 
section of Figure 4. Cogulator also provides a timeline 
visualization of the primitives used along with a map of when
working memory was most impacted in the task sequence.

Figure 4. Example of the Cogulator scripting interface.

In general, Cogulator provides the most modeling
flexibility, comprehensive modeling functionality, and 
available primitives; however, this inherent flexibility comes 
with the tradeoff of a steeper learning curve compared with 
KLM and CogTool. Cogulator may also be more tedious for 
creating models, as the HSI modeler must decide which 
GOMS model to use.  

NOTABLE CHARACTERISTICS OF NPP OPERATION

The operation of NPPs has notable differences in 
interaction characteristics from the traditional commercial 
computer-based systems that initiated the use of GOMS in 
evaluation. For one, the main control room contains hundreds 
of indications and controls that span an entire room where
control room operators must interface with multiple plant 
systems. Even in seated workstations, control room operators 
are required to interact with multiple monitors, each capable 
of presenting multiple displays. Second, control room 
monitoring tasks are often completed concurrently with other 
plant actions. For example, in a turbine startup, operators may 



be required to complete a series of control actions while 
monitoring key parameters. Simple serial interactions with 
controls and indications would not fully capture the
complexities of these concurrent interactions. 

Third, control room operators are often required to store 
information into memory, compare and check the quality or 
validity of information from various indications, and perform 
mental calculations at certain points in a procedure. Simple 
think times may not accurately capture the cognitive 
intricacies of these tasks. Finally, control room operators work 
as a team, with each control room operator given a specific 
responsibility. Hence, information is often integrated among 
HSIs and exchanged among different crew members, as 
opposed to merely looking for information on a single 
information display.

COMPARISION OF COGNITIVE MODELS

Each cognitive modeling tool presents certain tradeoffs 
when applied to NPP HSI design. Table 1 below summarizes 
each of these tools’ strengths and limitations from this context.

Table 1. Tradeoff evaluation of selected cognitive modeling tools.

KLM CogTool Cogulator
Strengths
 Does not require 

specialized software
 Little training 

required
 Does not require a 

visual representation 
of the HSI.

Strengths
 Able to rapidly build 

models through 
storyboards 
(efficient)

 Little training 
required with 
storyboard approach

 Provides 
visualization of 
underlying cognitive 
processes

 Offers ranges for 
predicted task times.

Strengths
 Does not require a 

visual representation 
of the HSI

 Able to model 
concurrent tasks

 Provides a more 
comprehensive list 
of primitives

 Capable of creating 
domain-specific 
primitives if needed

 Provides working 
memory load and 
workload predictions

 Able to model 
cognitive tasks such 
as mental arithmetic 
and memorizing.

Limitations
 Unable to model 

concurrent tasks
 Assumes a specific 

order for activities in 
a task

 Model creation can 
be tedious without 
running in formal 
software

 Does not provide 
working memory or 
workload estimates

 No built-in 
capability for 
visualizations to 
inspect the model

 Model primitives 
may be too general
to compare 
differences in design 
features across HSIs.

Limitations
 Requires a visual 

representation of the 
HSI

 Unable to model 
concurrent tasks

 Assumes a specific 
order for activities in 
a task

 Provided primitives 
are specific to 
computer-based 
tasks

 Difficult to add new 
domain-specific 
primitives

 Does not provide
working memory or 
workload predictions

 No feature to model 
cognitive tasks such 
as mental arithmetic 
and memorizing.

Limitations
 Steeper learning 

curve
 Model creation can 

be tedious using 
syntax

 Model creation can 
be tedious due to 
syntax-based design.

POTENTIAL USES CASES IN NPP MODERNIZATION

Cogulator seems to provide the most comprehensive 
functionality for NPP HSI evaluation. Models in Cogulator are 
capable of considering multitask activities, workload 
estimates, and interactions with physical controls, as well as 
providing the option to add new primitives as needed. 
Cogulator may be applicable for modeling detection and 
monitoring tasks, situation assessment, planning responses, 
executing plant actions, and interface management tasks. This 
increased functionality comes at the cost of potentially 
increasing development time, which may threaten rapid design 
iterations. As such, care should be taken when scoping the use 
of Cogulator in the context of early HSI evaluation. 

In contrast, CogTool offers an efficient means for 
building models through a point-and-click storyboard 
approach. Early wireframes and HSI mockups can be imported 
into the tool and rapidly modeled for predicted task times of
basic interactions with HSI controls and indications. As such, 
CogTool may be helpful in part-task evaluation of specific 
interactions with an HSI concept. CogTool may be preferred 
for model interface management tasks due to its ease of use. 
Finally, the use of traditional KLM falls within the same 
application as CogTool (although CogTool offers a more 
sophisticated cognitive architecture and usable interface). 
Table 2 summarizes these potential use cases for the general 
KLM approach, CogTool, and Cogulator. 

Table 2. Identified use cases for cognitive models in NPP modernization.

Cognitive Activities in a NPP KLM CogTool Cogulator
Detecting and Monitoring - - X
Situation Assessment - - X
Planning Responses - - X
Plant Actions (Control Room) - - X
Plant Actions (HSI) X X *Preferred
Interface Management X *Preferred X

It must be emphasized that further research is needed on 
all three tools to better understand how they could fit within an 
iterative HSI design process. Particularly, future research 
should focus on modeling of tasks related to control actions 
that affect various plant systems. For instance, the level of 
granularity with primitives used in these tools must be better 
understood to the extent that they can provide meaningful data 
while also supporting rapid iterative evaluations. Recent work 
in human reliability analysis has studied the role of GOMS in 
dynamic human error prediction (Boring, Ulrich, and
Rasmussen, 2018). Boring and colleagues distinguish between 
procedure-level primitives and lower-level task-level 
primitives. Within the context of HSI design, a procedure-
level primitive may be quicker to model but may miss certain 
nuances of the HSI design. For example, modeling the 
interaction with a specific soft control may require a finer 
level of analysis.

Furthermore, additional validation of these tools is 
necessary to establish confidence in them as acceptable 
methods for NPP modernization. The collection of empirical 
data from future operator-in-the-loop studies of more detailed 
cognitive tasks, such as performing mental calculations, 



decision-making, and concurrent monitoring, will inform 
future development of NPP-specific primitives that are 
necessary for modeling HSI interactions in a control room.

CONCLUSIONS

This work examined the use of KLM, CogTool, and 
Cogulator as potential tools for early HSI evaluations. Each of 
these tools provided unique and promising use cases. For 
instance, the use of KLM and especially CogTool may be 
favorable for quick evaluations of simple interactions with 
various controls and interface management tasks. Cogulator 
has greater functionality to support more comprehensive 
modeling of certain tasks such as when operators must make 
actions to control the NPP. HSI designers should consider 
these benefits and their corresponding tradeoffs to best support 
design questions on a case-by-case basis. To this end, future 
research is also needed to better understand the granularity, 
validity, and reliability of primitives used in GOMS models 
for NPP evaluation.

ACKNOWLEDGMENTS

This work of authorship was prepared as an account of work 
sponsored by Idaho National Laboratory, an agency of the 
United States Government. Neither the United States 
Government, nor any agency thereof, nor any of their 
employees makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would 
not infringe privately owned rights. Idaho National Laboratory 
is a multiprogram laboratory operated by Battelle Energy 
Alliance LLC, for the United States Department of Energy 
under Contract DE-AC07-05ID14517.

REFERENCES

Adio, O.D. & Ikuma, L. Harvey, C, & Nahmens, I. (2014). Assessing cogtool 
time prediction accuracy on control room displays. In IIE Annual 
Conference and Expo, 3325-3334. 

Bellamy, R., John, B., & Kogan, S. (2011). Deploying CogTool: integrating 
quantitative usability assessment into real-world software development. 
In Proceedings of the 33rd International Conference on Software 
Engineering, 691-700.

Boring, R. L., Ulrich, T. A., Joe, J. C., & Lew, R. T. (2015). Guideline for 
operational nuclear usability and knowledge elicitation (GONUKE). 
Procedia Manufacturing, 3, 1327-1334.

Boring, R. L., Ulrich, T. A., & Rasmussen, M. (2018). Task level errors for 
human error prediction in GOMS-HRA. In Safety and Reliability–Safe 
Societies in a Changing World, 433-439.

Campbell, C. B. (2002). Advanced integrated general aviation primary flight 
display user interface design, development and assessment. In Digital 
Avionics Systems Conference, 2, 10A5-10A5.

Card, S. K., Moran, T. P., & Newell, A. (1980). The keystroke-level model for 
user performance time with interactive systems. Communications of the
ACM, 23(7), 396-410. 

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-
computer interaction. CRC Press.

Drury, J. L., Scholtz, J., & Kieras, D. (2007). Adapting GOMS to model 
human-robot interaction. In Proceedings of the ACM/IEEE 
international conference on Human-robot interaction, 41-48.

Electric Power Research Institute (2015). Human Factors Guidance for 
Control Room and Digital Human-System Interface Design and 

Modification: Guidelines for Planning, Specification, Design, 
Licensing, Implementation, Training, Operation, and Maintenance for 
Operating Plants and New Builds. EPRI, Palo Alto, CA. 3002004310.

Estes, S. (2017). "Cogulator," The MITRE Corporation, [Online]. Available: 
http://cogulator.io.

Good, M., Spine, T. M., Whiteside, J., & George, P. (1986). User-derived 
impact analysis as a tool for usability engineering. In ACM SIGCHI 
Bulletin, 17(4), 241-246.

John, B.E., Prevas, K., Salvucci, D.D., & Koedinger, K. (2004). Predictive 
human performance modeling made easy. In Proceedings of the 
SIGCHI conference on Human factors in computing systems, 455-462.

Jorritsma, W., Haga, P. J., Cnossen, F., Dierckx, R. A., Oudkerk, M., & van 
Ooijen, P. M. (2015). Predicting human performance differences on 
multiple interface alternatives: KLM, GOMS and CogTool are 
unreliable. Procedia Manufacturing, 3, 3725-3731.

Luo, L., & John, B. E. (2005). Predicting task execution time on handheld 
devices using the keystroke-level model. In CHI'05 extended abstracts 
on Human factors in computing systems, 1605-1608.

Nielsen, J. (1994). Usability engineering. Elsevier.
Pettitt, M., Burnett, G., & Stevens, A. (2007). An extended keystroke level 

model (KLM) for predicting the visual demand of in-vehicle 
information systems. In Proceedings of the SIGCHI Conference on 
Human Factors in Computing Systems, 1515-1524.

Stanley, R. M., Kelley, D., Wilkins, S., & Castillo, A. (2017). Modeling the 
effects of new automation capabilities on air traffic control operations: 
Approved for public release; Distribution unlimited. Case number 17-
2692. In Digital Avionics Systems Conference (DASC), 1-7.

Ulrich, T. A., Boring, R. L., & Lew, R. (2018). Qualitative or quantitative data 
for nuclear control room usability studies? A pragmatic approach to 
data collection and presentation. In Proceedings of the Human Factors 
and Ergonomics Society Annual Meeting, 61(1), 1674-1678.

U.S. Nuclear Regulatory Commission. (2012). Human Factors Engineering 
Program Review Model, NUREG-0711, Rev. 3. Washington, DC: U.S. 
Nuclear Regulatory Commission.

U.S. Nuclear Regulatory Commission. (2016). Standard Review Plan for the 
Review of Safety Analysis Reports for Nuclear Power Plants: LWR 
Edition—Human Factors Engineering, Chapter 18, NUREG-0800, 
Rev. 3. Washington, DC: U.S. Nuclear Regulatory Commission.


	12350
	12350

